[1]吴泓辰,何金先,张晓丽,等.鄂尔多斯盆地临兴地区太原组页岩孔隙结构及分形特征[J].新疆石油地质,2018,(05):549.[doi:10.7657/XJPG20180508]
 WU Hongchen,HE Jinxian,ZHANG Xiaoli,et al.Pore Structure and Its Fractal Features of the Shale in Taiyuan Formation of Linxing Area, Ordos Basin[J].Xinjiang Petroleum Geology,2018,(05):549.[doi:10.7657/XJPG20180508]
点击复制

鄂尔多斯盆地临兴地区太原组页岩孔隙结构及分形特征()
分享到:

《新疆石油地质》[ISSN:1001-3873/CN:65-1107/TE]

卷:
期数:
2018年05期
页码:
549
栏目:
出版日期:
2018-10-01

文章信息/Info

Title:
Pore Structure and Its Fractal Features of the Shale in Taiyuan Formation of Linxing Area, Ordos Basin
文章编号:
1001-3873(2018)05-0549-06
作者:
吴泓辰12何金先12张晓丽1任泽强1周逃涛1王爱宽1
(1.中国矿业大学 资源与地球科学学院,江苏 徐州 221116;2.西南石油大学 天然气地质四川省重点实验室,成都 610500)
Author(s):
WU Hongchen12 HE Jinxian12 ZHANG Xiaoli1 REN Zeqiang1 ZHOU Taotao1 WANG Aikuan1
(1.School of Resources and Geoscience, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China; 2.Sichuan Province Key Laboratory of Natural Gas Geology, Southwest Petroleum University, Chengdu, Sichuan 610500, China)
关键词:
鄂尔多斯盆地临兴地区太原组页岩气孔隙结构高压压汞分形维数
Keywords:
Ordos basin Linxing area Taiyuan formation shale gas pore structure high-pressure mercury injection fractal dimension
分类号:
TE132.2
DOI:
10.7657/XJPG20180508
文献标志码:
A
摘要:
通过有机地球化学、X射线衍射等分析,对鄂尔多斯盆地临兴地区太原组页岩的物质组成特征进行了研究,利用高压压汞法探讨了页岩孔径分布特征,并利用分形理论对压汞数据进行了分析,以探讨页岩孔隙非均质性。结果表明,研究区页岩有机碳含量为1.59%~22.58%,平均为2.77%;脆性矿物含量为21.92%~74.45%,平均为44.55%;黏土矿物含量为19.43%~78.08%,平均为52.70%.根据压汞测试结果,部分页岩样品孔径具有“双峰式”的分布特点,较大的主峰对应微米级裂隙,较小的主峰对应大孔与介孔,而部分页岩样品孔径仅有裂隙对应的主峰。根据拟合结果,孔隙的分形维数可分为两段,第一段对应微米级裂隙,其分形维数为2.326 2~2.610 3;第二段对应大孔和介孔等纳米级孔隙,其分形维数为2.704 1~3.697 1.太原组页岩中,较小的纳米级孔隙是吸附态气体的主要储集空间,而较大的微米级裂隙主要作为游离态气体的储集空间及渗流通道。黏土矿物含量高而脆性矿物含量较低的页岩样品分形维数更大,对甲烷有着更强的吸附能力,但同时对压裂改造有着更高的要求。
Abstract:
The material composition of the shale of Taiyuan formation in Linxing area, Ordos basin is studied through the analysis of organic geochemistry and X-ray diffraction. The paper uses high-pressure mercury injection method to discuss pore size distribution of the shale, and analyzes mercury injection data with fractal theory to discuss the its pore heterogeneity. The results show that the TOC of the shale is 1.59%~22.58%, averaging 2.77%; the contents of brittle minerals ranges from 21.92% to 74.45%, averaging 44.55%; the contents of clay minerals ranges from 19.43% to 78.08%, averaging 52.70%. According to the result of mercury injection experiments, it is found that the pore size distribution in partial shale samples has a feature of “double peaks” , among which the larger main peak corresponds to micron-sized cracks and the smaller main peak corresponds to macropores and mesopores, while partial samples only have the main peak corresponding to cracks. Based on the matching results, fractal dimension of the pores can be divided into 2 sections, one section corresponds to micron-sized cracks with the fractal dimension ranging from 2.326 2 to 2.610 3 and the other corresponds to nano-pores such as macropores and mesopores with the fractal dimension ranging from 2.704 1 to 3.697 1. In the shale of Taiyuan formation, nanopores act as the main reservoir spaces of adsorbed gas while micro-sized cracks act as the main reservoir spaces of free gas and flowing passages. The shale samples with high content of clay minerals and low content of brittle minerals have larger fractal dimension and stronger absorption capacity to methane, which means that fracturing operation will be more difficult.

相似文献/References:

[1]翁望飞,王建强,张蓉蓉,等.利用声波测井技术计算地层剥蚀厚度——以鄂尔多斯盆地为例[J].新疆石油地质,2011,(02):143.
[2]武春英,贾亚妮,韩会平,等.鄂尔多斯盆地西缘探区奥陶系烃源岩评价[J].新疆石油地质,2015,36(02):180.[doi:10.7657/XJPG20150210]
 WU Chunying,JIA Yani,HAN Huiping,et al.Evaluation of Ordovician Source Rocks in Western Margin of Ordos Basin[J].Xinjiang Petroleum Geology,2015,36(05):180.[doi:10.7657/XJPG20150210]
[3]菅笑飞,唐书恒,刘人和,等.柳林地区煤层气储层特征与产能动态预测[J].新疆石油地质,2015,36(03):326.[doi:10.7657/XJPG20150315]
 JIAN Xiaofei,TANG Shuheng,LIU Renhe,et al.CBM Reservoir Characteristics and Productivity Prediction in Liulin Area ,Ordos Basin[J].Xinjiang Petroleum Geology,2015,36(05):326.[doi:10.7657/XJPG20150315]
[4]杨智峰,曾溅辉,冯 枭,等.源储岩性组合对致密油聚集的影响——以鄂尔多斯盆地延长组长7段为例[J].新疆石油地质,2015,36(04):389.[doi:10.7657/XJPG20150403]
 YANG Zhifeng,ZENG Jianhui,FENG Xiao,et al.Effects of SourceReservoir Lithologic Assemblage on Tight Oil Accumulation: A Case Study of Yanchang Chang7Member in Ordos Basin[J].Xinjiang Petroleum Geology,2015,36(05):389.[doi:10.7657/XJPG20150403]
[5]冯 渊,杨伟伟,刘一仓,等.鄂尔多斯盆地镇北油田长81油藏电阻率差异成因[J].新疆石油地质,2015,36(05):526.[doi:10.7657/XJPG20150505]
 FENG Yuan,YANG Weiwei,LIU Yicang,et al.Analysis on Causes of Reservoir Resistivity Differences of Chang81Reservoir in Zhenbei Oilfield, Ordos Basin[J].Xinjiang Petroleum Geology,2015,36(05):526.[doi:10.7657/XJPG20150505]
[6]宁 博,王起琮,李百强,等.鄂尔多斯盆地马五5亚段白云岩化成因模式[J].新疆石油地质,2015,36(05):531.[doi:10.7657/XJPG20150506]
 NING Bo,WANG Qicong,LI Baiqiang,et al.Genetic Model for M55SubMember Dolomitization of Majiegou Formation in Ordos Basin[J].Xinjiang Petroleum Geology,2015,36(05):531.[doi:10.7657/XJPG20150506]
[7]赵子龙,赵靖舟,曹 磊,等.基于充注模拟实验的致密砂岩气成藏过程分析——以鄂尔多斯盆地为例[J].新疆石油地质,2015,36(05):583.[doi:10.7657/XJPG20150516]
 ZHAO ZilongZHAO JingzhouCAO LeiWANG Jiangtao.Accumulation Process Analysis on Tight Sandstone Gas Based on Charging Simulation Experiment: An Example of Ordos Basin[J].Xinjiang Petroleum Geology,2015,36(05):583.[doi:10.7657/XJPG20150516]
[8]郑忠文,张汉生.鄂尔多斯盆地富县探区延长组长6—长8段超低渗砂岩储集层孔喉特征[J].新疆石油地质,2016,(01):13.[doi:10.7657/XJPG20160103]
 ZHENG Zhongwen,ZHANG Hansheng.Pore and Throat Characteristics of Chang6-Chang8 UltraLow Permeability Sandstone Reservoirs of Yanchang Formation in Fuxian Exploration Area, Ordos Basin[J].Xinjiang Petroleum Geology,2016,(05):13.[doi:10.7657/XJPG20160103]
[9]张志强,师永民,李 鹤.致密储集层应力敏感性分类评价[J].新疆石油地质,2016,(01):62.[doi:10.7657/XJPG20160112]
 ZHANG Zhiqiang,SHI Yongmin,LI He.Classified Evaluation of Stress Sensitivity in Tight Reservoir Rocks[J].Xinjiang Petroleum Geology,2016,(05):62.[doi:10.7657/XJPG20160112]
[10]喻廷旭,汤达祯,房 媛,等.煤岩比表面积表征方法[J].新疆石油地质,2016,(01):92.[doi:10.7657/XJPG20160118]
 YU Tingxu,TANG Dazhen,FANG Yuan,et al.Characterization Method for Coalbed Specific Surface Area[J].Xinjiang Petroleum Geology,2016,(05):92.[doi:10.7657/XJPG20160118]

更新日期/Last Update: 2018-10-09